(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
S tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0) →
c(
COND(
odd(
z0),
p(
z0)),
ODD(
z0),
P(
z0)) by
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, x0) → c
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [4]x2
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
0),
ODD(
0),
P(
0)) by
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, 0) → c
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0)) →
c(
COND(
odd(
s(
z0)),
z0),
ODD(
s(
z0)),
P(
s(
z0))) by
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(x0)) → c
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(x0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(x0)) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
s(
0))),
ODD(
s(
0)),
P(
s(
0))) by
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0)) → c
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(COND(x1, x2)) = [2]
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c) = 0
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [3] + [3]x1
POL(p(x1)) = [2] + [3]x1
POL(s(x1)) = 0
POL(true) = [3]
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
K tuples:
COND(true, s(0)) → c
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [4]x2
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c) = 0
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(0)) → c
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0))) →
c(
COND(
odd(
z0),
p(
s(
s(
z0)))),
ODD(
s(
s(
z0))),
P(
s(
s(
z0)))) by
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:
COND(true, s(0)) → c
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(COND(x1, x2)) = [4]
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = [3] + [3]x1
POL(p(x1)) = [4]
POL(s(x1)) = [2]
POL(true) = [2]
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [4] + [3]x1
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [3]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [3] + [4]x1
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = [2]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [2]
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(33) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ODD(
s(
s(
z0))) →
c3(
ODD(
z0)) by
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(37) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0))))) by COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(39) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [4]x2
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [5]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(41) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0)))))) by COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [1] + x2
POL(ODD(x1)) = 0
POL(P(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = [4]
POL(odd(x1)) = [4]x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2)) = [1] + x22
POL(ODD(x1)) = x1
POL(P(x1)) = [1]
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:none
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(47) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(48) BOUNDS(O(1), O(1))